Output list
Other
Published 2018
arXiv, 1803.09470
This paper proposes a novel image set classification technique based on the concept of linear regression. Unlike most other approaches, the proposed technique does not involve any training or feature extraction. The gallery image sets are represented as subspaces in a high dimensional space. Class specific gallery subspaces are used to estimate regression models for each image of the test image set. Images of the test set are then projected on the gallery subspaces. Residuals, calculated using the Euclidean distance between the original and the projected test images, are used as the distance metric. Three different strategies are devised to decide on the final class of the test image set. We performed extensive evaluations of the proposed technique under the challenges of low resolution, noise and less gallery data for the tasks of surveillance, video-based face recognition and object recognition. Experiments show that the proposed technique achieves a better classification accuracy and a faster execution time compared to existing techniques especially under the challenging conditions of low resolution and small gallery and test data.
Other
Efficient image set classification using linear regression based image reconstruction
Published 2017
arXiv, 1701.02485
We propose a novel image set classification technique using linear regression models. Downsampled gallery image sets are interpreted as subspaces of a high dimensional space to avoid the computationally expensive training step. We estimate regression models for each test image using the class specific gallery subspaces. Images of the test set are then reconstructed using the regression models. Based on the minimum reconstruction error between the reconstructed and the original images, a weighted voting strategy is used to classify the test set. We performed extensive evaluation on the benchmark UCSD/Honda, CMU Mobo and YouTube Celebrity datasets for face classification, and ETH-80 dataset for object classification. The results demonstrate that by using only a small amount of training data, our technique achieved competitive classification accuracy and superior computational speed compared with the state-of-the-art methods.