Book chapter
Extreme Events Trigger Terrestrial and Marine Ecosystem Collapses in the Southwestern USA and Southwestern Australia
Ecosystem Collapse and Climate Change, pp.187-217
Ecological Studies-Analysis and Synthesis, 241, Springer Nature
2021
Abstract
We outline the multiple, cross-scale, and complex consequences of terrestrial and marine ecosystem heatwaves in two regions on opposite sides of the planet: the southwestern USA and southwestern Australia, both encompassing Global Biodiversity Hotspots, and where ecosystem collapses or features of it have occurred in the past two decades. We highlight ecosystem shifts that have clearly demonstrated a substantial change from a baseline state over time, although not necessarily across their entire distribution, with evidence of collapse at local scales. Responses to temperature extremes, such as heatwaves, encompass processes at all scales, including population level (e.g. altered demography such as survival, recruitment, and fecundity, together resulting in structural changes), community level (e.g. species compositional shifts), and ecosystem level (e.g. carbon loss), as well as physical properties altered by vegetation loss (e.g. microclimate, fire behaviour on land). These changes impact all trophic levels with foundational species losses (such as seagrasses, kelp, and trees), flowing through to vertebrates (such as sea turtles, penguins, and cockatoos). Where extensive collapse has occurred, shifts in microclimate could affect important biosphere-to-atmosphere feedbacks including fluxes of energy, carbon, and water. Such extensive changes usually do not occur in isolation and frequently interact with other disturbance processes such as fire, storms, pathogen and pest outbreaks, and anthropogenic stressors. Interactions may alter the likelihood, extent, or severity of subsequent disturbances (linked disturbances) as well as condition the ecological response and recovery (compound disturbances). In addition, if ecosystem collapse is extensive enough (e.g. tree die-off), those changes also can impact climate and ecosystems elsewhere via ecoclimate teleconnections. Increasing rates of climatic extremes will drive a host of direct and indirect feedbacks certain to produce large-scale shifts in ecological functioning at unprecedented rates. Understanding how, why, and where these shifts will occur will be critical for effective ecosystem management and climate change mitigation.
Details
- Title
- Extreme Events Trigger Terrestrial and Marine Ecosystem Collapses in the Southwestern USA and Southwestern Australia
- Authors/Creators
- Katinka X. Ruthrof - Murdoch UniversityJoseph B. Fontaine - Murdoch Univ, Environm & Conservat Sci, Murdoch, WA, AustraliaDavid D. Breshears - University of ArizonaJason P. Field - University of ArizonaCraig D. Allen - US Geol Survey, Ft Collins Sci Ctr, New Mexico Landscapes Field Stn, Los Alamos, NM USA
- Contributors
- R B Jackson (Editor)J G Canadell (Editor)
- Publication Details
- Ecosystem Collapse and Climate Change, pp.187-217
- Series
- Ecological Studies-Analysis and Synthesis; 241
- Publisher
- Springer Nature; NEW YORK
- Number of pages
- 31
- Identifiers
- 991005579936807891
- Copyright
- © 2021 Springer Nature Switzerland AG
- Murdoch Affiliation
- Centre for Terrestrial Ecosystem Science and Sustainability; School of Environmental and Conservation Sciences
- Language
- English
- Resource Type
- Book chapter
UN Sustainable Development Goals (SDGs)
This output has contributed to the advancement of the following goals:
Source: InCites
Metrics
116 Record Views